MPSTAN: Metapopulation-based Spatio-Temporal Attention Network for Epidemic Forecasting

15 Jun 2023  ·  Junkai Mao, Yuexing Han, Bing Wang ·

Accurate epidemic forecasting plays a vital role for governments in developing effective prevention measures for suppressing epidemics. Most of the present spatio-temporal models cannot provide a general framework for stable, and accurate forecasting of epidemics with diverse evolution trends. Incorporating epidemiological domain knowledge ranging from single-patch to multi-patch into neural networks is expected to improve forecasting accuracy. However, relying solely on single-patch knowledge neglects inter-patch interactions, while constructing multi-patch knowledge is challenging without population mobility data. To address the aforementioned problems, we propose a novel hybrid model called Metapopulation-based Spatio-Temporal Attention Network (MPSTAN). This model aims to improve the accuracy of epidemic forecasting by incorporating multi-patch epidemiological knowledge into a spatio-temporal model and adaptively defining inter-patch interactions. Moreover, we incorporate inter-patch epidemiological knowledge into both the model construction and loss function to help the model learn epidemic transmission dynamics. Extensive experiments conducted on two representative datasets with different epidemiological evolution trends demonstrate that our proposed model outperforms the baselines and provides more accurate and stable short- and long-term forecasting. We confirm the effectiveness of domain knowledge in the learning model and investigate the impact of different ways of integrating domain knowledge on forecasting. We observe that using domain knowledge in both model construction and loss functions leads to more efficient forecasting, and selecting appropriate domain knowledge can improve accuracy further.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here