Motion Planning for Identification of Linear Classifiers

23 Mar 2024  ·  Aneesh Raghavan, Karl Henrik Johansson ·

A given region in 2-D Euclidean space is divided by a unknown linear classifier in to two sets each carrying a label. The objective of an agent with known dynamics traversing the region is to identify the true classifier while paying a control cost across its trajectory. We consider two scenarios: (i) the agent is able to measure the true label perfectly; (ii) the observed label is the true label multiplied by noise. We present the following: (i) the classifier identification problem formulated as a control problem; (ii) geometric interpretation of the control problem resulting in one step modified control problems; (iii) control algorithms that result in data sets which are used to identify the true classifier with accuracy; (iv) convergence of estimated classifier to the true classifier when the observed label is not corrupted by noise; (iv) numerical example demonstrating the utility of the control algorithms.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here