Modulating transfer between tasks in gradient-based meta-learning

Learning-to-learn or meta-learning leverages data-driven inductive bias to increase the efficiency of learning on a novel task. This approach encounters difficulty when transfer is not mutually beneficial, for instance, when tasks are sufficiently dissimilar or change over time. Here, we use the connection between gradient-based meta-learning and hierarchical Bayes to propose a mixture of hierarchical Bayesian models over the parameters of an arbitrary function approximator such as a neural network. Generalizing the model-agnostic meta-learning (MAML) algorithm, we present a stochastic expectation maximization procedure to jointly estimate parameter initializations for gradient descent as well as a latent assignment of tasks to initializations. This approach better captures the diversity of training tasks as opposed to consolidating inductive biases into a single set of hyperparameters. Our experiments demonstrate better generalization on the standard miniImageNet benchmark for 1-shot classification. We further derive a novel and scalable non-parametric variant of our method that captures the evolution of a task distribution over time as demonstrated on a set of few-shot regression tasks.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here