Modern GPR Target Recognition Methods

2 Nov 2022  ·  Fabio Giovanneschi, Kumar Vijay Mishra, Maria Antonia Gonzalez-Huici ·

Traditional GPR target recognition methods include pre-processing the data by removal of noisy signatures, dewowing (high-pass filtering to remove low-frequency noise), filtering, deconvolution, migration (correction of the effect of survey geometry), and can rely on the simulation of GPR responses. The techniques usually suffer from the loss of information, inability to adapt from prior results, and inefficient performance in the presence of strong clutter and noise. To address these challenges, several advanced processing methods have been developed over the past decade to enhance GPR target recognition. In this chapter, we provide an overview of these modern GPR processing techniques. In particular, we focus on the following methods: adaptive receive processing of range profiles depending on the target environment; adoption of learning-based methods so that the radar utilizes the results from prior measurements; application of methods that exploit the fact that the target scene is sparse in some domain or dictionary; application of advanced classification techniques; and convolutional coding which provides succinct and representatives features of the targets. We describe each of these techniques or their combinations through a representative application of landmine detection.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here