Modelling infectious disease transmission dynamics in conference environments: An individual-based approach

17 Apr 2024  ·  Xue Liu, Yue Deng, Jingying Huang, Yuhong Zhang, Jinzhi Lei ·

The global public health landscape is perpetually challenged by the looming threat of infectious diseases. Central to addressing this concern is the imperative to prevent and manage disease transmission during pandemics, particularly in unique settings. This study addresses the transmission dynamics of infectious diseases within conference venues, presenting a computational model designed to simulate transmission processes within a condensed timeframe (one day), beginning with sporadic cases. Our model intricately captures the activities of individual attendees within the conference venue, encompassing meetings, rest intervals, and meal breaks. While meetings entail proximity seating, rest and lunch periods allow attendees to interact with diverse individuals. Moreover, the restroom environment poses an additional avenue for potential infection transmission. Employing an individual-based model, we meticulously replicated the transmission dynamics of infectious diseases, with a specific emphasis on close-contact interactions between infected and susceptible individuals. Through comprehensive analysis of model simulations, we elucidated the intricacies of disease transmission dynamics within conference settings and assessed the efficacy of control strategies to curb disease dissemination. Ultimately, our study proffers a numerical framework for assessing the risk of infectious disease transmission during short-duration conferences, furnishing conference organizers with valuable insights to inform the implementation of targeted prevention and control measures.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here