Modelling Compositionality and Structure Dependence in Natural Language

22 Nov 2020  ·  Karthikeya Ramesh Kaushik, Andrea E. Martin ·

Human beings possess the most sophisticated computational machinery in the known universe. We can understand language of rich descriptive power, and communicate in the same environment with astonishing clarity. Two of the many contributors to the interest in natural language - the properties of Compositionality and Structure Dependence, are well documented, and offer a vast space to ask interesting modelling questions. The first step to begin answering these questions is to ground verbal theory in formal terms. Drawing on linguistics and set theory, a formalisation of these ideas is presented in the first half of this thesis. We see how cognitive systems that process language need to have certain functional constraints, viz. time based, incremental operations that rely on a structurally defined domain. The observations that result from analysing this formal setup are examined as part of a modelling exercise. Using the advances of word embedding techniques, a model of relational learning is simulated with a custom dataset to demonstrate how a time based role-filler binding mechanism satisfies some of the constraints described in the first section. The model's ability to map structure, along with its symbolic-connectionist architecture makes for a cognitively plausible implementation. The formalisation and simulation are together an attempt to recognise the constraints imposed by linguistic theory, and explore the opportunities presented by a cognitive model of relation learning to realise these constraints.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here