Modeling Interactions of Autonomous Vehicles and Pedestrians with Deep Multi-Agent Reinforcement Learning for Collision Avoidance

30 Sep 2021  ·  Raphael Trumpp, Harald Bayerlein, David Gesbert ·

Reliable pedestrian crash avoidance mitigation (PCAM) systems are crucial components of safe autonomous vehicles (AVs). The nature of the vehicle-pedestrian interaction where decisions of one agent directly affect the other agent's optimal behavior, and vice versa, is a challenging yet often neglected aspect of such systems. We address this issue by modeling a Markov decision process (MDP) for a simulated AV-pedestrian interaction at an unmarked crosswalk. The AV's PCAM decision policy is learned through deep reinforcement learning (DRL). Since modeling pedestrians realistically is challenging, we compare two levels of intelligent pedestrian behavior. While the baseline model follows a predefined strategy, our advanced pedestrian model is defined as a second DRL agent. This model captures continuous learning and the uncertainty inherent in human behavior, making the AV-pedestrian interaction a deep multi-agent reinforcement learning (DMARL) problem. We benchmark the developed PCAM systems according to the collision rate and the resulting traffic flow efficiency with a focus on the influence of observation uncertainty on the decision-making of the agents. The results show that the AV is able to completely mitigate collisions under the majority of the investigated conditions and that the DRL pedestrian model learns an intelligent crossing behavior.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here