Modeling Cell Size Distribution with Heterogeneous Flux Balance Analysis

13 Apr 2023  ·  Michiel Busschaert, Florence H. Vermeire, Steffen Waldherr ·

For over two decades, Flux Balance Analysis (FBA) has been successfully used for predicting growth rates and intracellular reaction rates in microbiological metabolism. An aspect that is often omitted from this analysis, is segregation or heterogeneity between different cells. In this work, we propose an extended FBA method to model cell size distributions in balanced growth conditions. Hereto, a mathematical description of the concept of balanced growth in terms of cell mass distribution is presented. The cell mass distribution, quantified by the Number Density Function (NDF), is affected by cell growth and cell division. An optimization program is formulated in a general manner in which the NDF, average cell culture growth rate and reaction rates per cell mass are treated as optimization variables. As qualitative proof of concept, the methodology is illustrated on a core carbon model of Escherichia coli under aerobic growth conditions. This illustrates feasibility and applications of this method, while indicating some shortcomings intrinsic to the simplified biomass structuring and the time invariant approach.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here