Model Optimization for Deep Space Exploration via Simulators and Deep Learning

28 Dec 2020  ·  James Bird, Kellan Colburn, Linda Petzold, Philip Lubin ·

Machine learning, and eventually true artificial intelligence techniques, are extremely important advancements in astrophysics and astronomy. We explore the application of deep learning using neural networks in order to automate the detection of astronomical bodies for future exploration missions, such as missions to search for signatures or suitability of life. The ability to acquire images, analyze them, and send back those that are important, as determined by the deep learning algorithm, is critical in bandwidth-limited applications. Our previous foundational work solidified the concept of using simulator images and deep learning in order to detect planets. Optimization of this process is of vital importance, as even a small loss in accuracy might be the difference between capturing and completely missing a possibly-habitable nearby planet. Through computer vision, deep learning, and simulators, we introduce methods that optimize the detection of exoplanets. We show that maximum achieved accuracy can hit above 98% for multiple model architectures, even with a relatively small training set.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here