Model-Free Reinforcement Learning for Optimal Control of MarkovDecision Processes Under Signal Temporal Logic Specifications

27 Sep 2021  ·  Krishna C. Kalagarla, Rahul Jain, Pierluigi Nuzzo ·

We present a model-free reinforcement learning algorithm to find an optimal policy for a finite-horizon Markov decision process while guaranteeing a desired lower bound on the probability of satisfying a signal temporal logic (STL) specification. We propose a method to effectively augment the MDP state space to capture the required state history and express the STL objective as a reachability objective. The planning problem can then be formulated as a finite-horizon constrained Markov decision process (CMDP). For a general finite horizon CMDP problem with unknown transition probability, we develop a reinforcement learning scheme that can leverage any model-free RL algorithm to provide an approximately optimal policy out of the general space of non-stationary randomized policies. We illustrate the effectiveness of our approach in the context of robotic motion planning for complex missions under uncertainty and performance objectives.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here