Model-free prediction of noisy chaotic time series by deep learning

29 Sep 2017  ·  Kyongmin Yeo ·

We present a deep neural network for a model-free prediction of a chaotic dynamical system from noisy observations. The proposed deep learning model aims to predict the conditional probability distribution of a state variable. The Long Short-Term Memory network (LSTM) is employed to model the nonlinear dynamics and a softmax layer is used to approximate a probability distribution. The LSTM model is trained by minimizing a regularized cross-entropy function. The LSTM model is validated against delay-time chaotic dynamical systems, Mackey-Glass and Ikeda equations. It is shown that the present LSTM makes a good prediction of the nonlinear dynamics by effectively filtering out the noise. It is found that the prediction uncertainty of a multiple-step forecast of the LSTM model is not a monotonic function of time; the predicted standard deviation may increase or decrease dynamically in time.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods