Model-Based RL for Mean-Field Games is not Statistically Harder than Single-Agent RL

8 Feb 2024  ·  Jiawei Huang, Niao He, Andreas Krause ·

We study the sample complexity of reinforcement learning (RL) in Mean-Field Games (MFGs) with model-based function approximation that requires strategic exploration to find a Nash Equilibrium policy. We introduce the Partial Model-Based Eluder Dimension (P-MBED), a more effective notion to characterize the model class complexity. Notably, P-MBED measures the complexity of the single-agent model class converted from the given mean-field model class, and potentially, can be exponentially lower than the MBED proposed by \citet{huang2023statistical}. We contribute a model elimination algorithm featuring a novel exploration strategy and establish sample complexity results polynomial w.r.t.~P-MBED. Crucially, our results reveal that, under the basic realizability and Lipschitz continuity assumptions, \emph{learning Nash Equilibrium in MFGs is no more statistically challenging than solving a logarithmic number of single-agent RL problems}. We further extend our results to Multi-Type MFGs, generalizing from conventional MFGs and involving multiple types of agents. This extension implies statistical tractability of a broader class of Markov Games through the efficacy of mean-field approximation. Finally, inspired by our theoretical algorithm, we present a heuristic approach with improved computational efficiency and empirically demonstrate its effectiveness.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here