Model Averaging and Augmented Inference for Stable Echocardiography Segmentation using 2D ConvNets

MIDL 2019  ·  Joshua V. Stough ·

The automatic segmentation of heart substructures in 2D echocardiography images is a goal common to both clinicians and researchers. Convolutional neural networks (CNNs) have recently shown the best average performance. However, on the rare occasions that a trained CNN fails, it can fail spectacularly. To mitigate these errors, in this work we develop and validate two easily implementable schemes for regularizing performance in 2D CNNs: model averaging and augmented inference. Model averaging involves training multiple instances of a CNN with data augmentation over a sampled training set. Augmented inference involves accumulating network output over augmentations of the test image. Using the recently released CAMUS echocardiography dataset, we show significant incremental improvement in outlier performance over the baseline model. These encouraging results must still be validated against independent clinical data.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here