Model-agnostic stochastic model predictive control

23 Nov 2022  ·  Tapas Tripura, Souvik Chakraborty ·

We propose a model-agnostic stochastic predictive control (MASMPC) algorithm for dynamical systems. The proposed approach first discovers \textit{interpretable} governing differential equations from data using a novel algorithm and blends it with a model predictive control algorithm. One salient feature of the proposed approach resides in the fact that it requires no input measurement (external excitation); the unknown excitation is instead treated as white noise, and a stochastic differential equation corresponding to the underlying system is identified. With the novel stochastic differential equation discovery framework, the proposed approach is able to generalize; this eliminates the repeated retraining phase -- a major bottleneck with other machine learning-based model agnostic control algorithms. Overall, the proposed MASMPC (a) is robust against measurement noise, (b) works with sparse measurements, (c) can tackle set-point changes, (d) works with multiple control variables, and (e) can incorporate dead time. We have obtained state-of-the-art results on several benchmark examples. Finally, we use the proposed approach for vibration mitigation of a 76-storey building under seismic loading.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here