Mixtures of Gaussians are Privately Learnable with a Polynomial Number of Samples

7 Sep 2023  ·  Mohammad Afzali, Hassan Ashtiani, Christopher Liaw ·

We study the problem of estimating mixtures of Gaussians under the constraint of differential privacy (DP). Our main result is that $\text{poly}(k,d,1/\alpha,1/\varepsilon,\log(1/\delta))$ samples are sufficient to estimate a mixture of $k$ Gaussians in $\mathbb{R}^d$ up to total variation distance $\alpha$ while satisfying $(\varepsilon, \delta)$-DP. This is the first finite sample complexity upper bound for the problem that does not make any structural assumptions on the GMMs. To solve the problem, we devise a new framework which may be useful for other tasks. On a high level, we show that if a class of distributions (such as Gaussians) is (1) list decodable and (2) admits a "locally small'' cover (Bun et al., 2021) with respect to total variation distance, then the class of its mixtures is privately learnable. The proof circumvents a known barrier indicating that, unlike Gaussians, GMMs do not admit a locally small cover (Aden-Ali et al., 2021b).

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here