MirrorCalib: Utilizing Human Pose Information for Mirror-based Virtual Camera Calibration

5 Nov 2023  ·  Longyun Liao, Andrew Mitchell, Rong Zheng ·

In this paper, we present the novel task of estimating the extrinsic parameters of a virtual camera relative to a real camera in exercise videos with a mirror. This task poses a significant challenge in scenarios where the views from the real and mirrored cameras have no overlap or share salient features. To address this issue, prior knowledge of a human body and 2D joint locations are utilized to estimate the camera extrinsic parameters when a person is in front of a mirror. We devise a modified eight-point algorithm to obtain an initial estimation from 2D joint locations. The 2D joint locations are then refined subject to human body constraints. Finally, a RANSAC algorithm is employed to remove outliers by comparing their epipolar distances to a predetermined threshold. MirrorCalib is evaluated on both synthetic and real datasets and achieves a rotation error of 0.62{\deg}/1.82{\deg} and a translation error of 37.33/69.51 mm on the synthetic/real dataset, which outperforms the state-of-art method.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here