Nearly Minimax Optimal Reinforcement Learning for Discounted MDPs

NeurIPS 2021  ·  Jiafan He, Dongruo Zhou, Quanquan Gu ·

We study the reinforcement learning problem for discounted Markov Decision Processes (MDPs) under the tabular setting. We propose a model-based algorithm named UCBVI-$\gamma$, which is based on the \emph{optimism in the face of uncertainty principle} and the Bernstein-type bonus. We show that UCBVI-$\gamma$ achieves an $\tilde{O}\big({\sqrt{SAT}}/{(1-\gamma)^{1.5}}\big)$ regret, where $S$ is the number of states, $A$ is the number of actions, $\gamma$ is the discount factor and $T$ is the number of steps. In addition, we construct a class of hard MDPs and show that for any algorithm, the expected regret is at least $\tilde{\Omega}\big({\sqrt{SAT}}/{(1-\gamma)^{1.5}}\big)$. Our upper bound matches the minimax lower bound up to logarithmic factors, which suggests that UCBVI-$\gamma$ is nearly minimax optimal for discounted MDPs.

PDF Abstract NeurIPS 2021 PDF NeurIPS 2021 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here