Minimax Lower Bounds for Kronecker-Structured Dictionary Learning

17 May 2016  ·  Zahra Shakeri, Waheed U. Bajwa, Anand D. Sarwate ·

Dictionary learning is the problem of estimating the collection of atomic elements that provide a sparse representation of measured/collected signals or data. This paper finds fundamental limits on the sample complexity of estimating dictionaries for tensor data by proving a lower bound on the minimax risk. This lower bound depends on the dimensions of the tensor and parameters of the generative model. The focus of this paper is on second-order tensor data, with the underlying dictionaries constructed by taking the Kronecker product of two smaller dictionaries and the observed data generated by sparse linear combinations of dictionary atoms observed through white Gaussian noise. In this regard, the paper provides a general lower bound on the minimax risk and also adapts the proof techniques for equivalent results using sparse and Gaussian coefficient models. The reported results suggest that the sample complexity of dictionary learning for tensor data can be significantly lower than that for unstructured data.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here