MIML-FCN+: Multi-instance Multi-label Learning via Fully Convolutional Networks with Privileged Information

Multi-instance multi-label (MIML) learning has many interesting applications in computer visions, including multi-object recognition and automatic image tagging. In these applications, additional information such as bounding-boxes, image captions and descriptions is often available during training phrase, which is referred as privileged information (PI). However, as existing works on learning using PI only consider instance-level PI (privileged instances), they fail to make use of bag-level PI (privileged bags) available in MIML learning. Therefore, in this paper, we propose a two-stream fully convolutional network, named MIML-FCN+, unified by a novel PI loss to solve the problem of MIML learning with privileged bags. Compared to the previous works on PI, the proposed MIML-FCN+ utilizes the readily available privileged bags, instead of hard-to-obtain privileged instances, making the system more general and practical in real world applications. As the proposed PI loss is convex and SGD compatible and the framework itself is a fully convolutional network, MIML-FCN+ can be easily integrated with state of-the-art deep learning networks. Moreover, the flexibility of convolutional layers allows us to exploit structured correlations among instances to facilitate more effective training and testing. Experimental results on three benchmark datasets demonstrate the effectiveness of the proposed MIML-FCN+, outperforming state-of-the-art methods in the application of multi-object recognition.

PDF Abstract CVPR 2017 PDF CVPR 2017 Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here