Microwave Photonic Imaging Radar with a Millimeter-level Resolution

9 Apr 2020  ·  Cong Ma, Yue Yang, Ce Liu, Beichen Fan, Xingwei Ye, Yamei Zhang, Xiangchuan Wang, Shilong Pan ·

Microwave photonic radars enable fast or even real-time high-resolution imaging thanks to its broad bandwidth. Nevertheless, the frequency range of the radars usually overlaps with other existed radio-frequency (RF) applications, and only a centimeter-level imaging resolution has been reported, making them insufficient for civilian applications. Here, we propose a microwave photonic imaging radar with a millimeter-level resolution by introducing a frequency-stepped chirp signal based on an optical frequency shifting loop. As compared with the conventional linear-frequency modulated (LFM) signal, the frequency-stepped chirp signal can bring the system excellent capability of anti-interference. In an experiment, a frequency-stepped chirp signal with a total bandwidth of 18.2 GHz (16.9 to 35.1 GHz) is generated. Postprocessing the radar echo, radar imaging with a two-dimensional imaging resolution of ~8.5 mm$\times$~8.3 mm is achieved. An auto-regressive algorithm is used to reconstruct the disturbed signal when a frequency interference exists, and the high-resolution imaging is sustained.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here