MGNet: Learning Correspondences via Multiple Graphs

10 Jan 2024  ·  Luanyuan Dai, Xiaoyu Du, Hanwang Zhang, Jinhui Tang ·

Learning correspondences aims to find correct correspondences (inliers) from the initial correspondence set with an uneven correspondence distribution and a low inlier rate, which can be regarded as graph data. Recent advances usually use graph neural networks (GNNs) to build a single type of graph or simply stack local graphs into the global one to complete the task. But they ignore the complementary relationship between different types of graphs, which can effectively capture potential relationships among sparse correspondences. To address this problem, we propose MGNet to effectively combine multiple complementary graphs. To obtain information integrating implicit and explicit local graphs, we construct local graphs from implicit and explicit aspects and combine them effectively, which is used to build a global graph. Moreover, we propose Graph~Soft~Degree~Attention (GSDA) to make full use of all sparse correspondence information at once in the global graph, which can capture and amplify discriminative features. Extensive experiments demonstrate that MGNet outperforms state-of-the-art methods in different visual tasks. The code is provided in https://github.com/DAILUANYUAN/MGNet-2024AAAI.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here