MetaViewer: Towards A Unified Multi-View Representation

Existing multi-view representation learning methods typically follow a specific-to-uniform pipeline, extracting latent features from each view and then fusing or aligning them to obtain the unified object representation. However, the manually pre-specify fusion functions and view-private redundant information mixed in features potentially degrade the quality of the derived representation. To overcome them, we propose a novel bi-level-optimization-based multi-view learning framework, where the representation is learned in a uniform-to-specific manner. Specifically, we train a meta-learner, namely MetaViewer, to learn fusion and model the view-shared meta representation in outer-level optimization. Start with this meta representation, view-specific base-learners are then required to rapidly reconstruct the corresponding view in inner-level. MetaViewer eventually updates by observing reconstruction processes from uniform to specific over all views, and learns an optimal fusion scheme that separates and filters out view-private information. Extensive experimental results in downstream tasks such as classification and clustering demonstrate the effectiveness of our method.

PDF Abstract CVPR 2023 PDF CVPR 2023 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here