Meta-Learning Linear Quadratic Regulators: A Policy Gradient MAML Approach for the Model-free LQR

25 Jan 2024  ·  Leonardo F. Toso, Donglin Zhan, James Anderson, Han Wang ·

We investigate the problem of learning Linear Quadratic Regulators (LQR) in a multi-task, heterogeneous, and model-free setting. We characterize the stability and personalization guarantees of a Policy Gradient-based (PG) Model-Agnostic Meta-Learning (MAML) (Finn et al., 2017) approach for the LQR problem under different task-heterogeneity settings. We show that the MAML-LQR approach produces a stabilizing controller close to each task-specific optimal controller up to a task-heterogeneity bias for both model-based and model-free settings. Moreover, in the model-based setting, we show that this controller is achieved with a linear convergence rate, which improves upon sub-linear rates presented in existing MAML-LQR work. In contrast to existing MAML-LQR results, our theoretical guarantees demonstrate that the learned controller can efficiently adapt to unseen LQR tasks.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here