Memory-efficient deep end-to-end posterior network (DEEPEN) for inverse problems

8 Feb 2024  ·  Jyothi Rikhab Chand, Mathews Jacob ·

End-to-End (E2E) unrolled optimization frameworks show promise for Magnetic Resonance (MR) image recovery, but suffer from high memory usage during training. In addition, these deterministic approaches do not offer opportunities for sampling from the posterior distribution. In this paper, we introduce a memory-efficient approach for E2E learning of the posterior distribution. We represent this distribution as the combination of a data-consistency-induced likelihood term and an energy model for the prior, parameterized by a Convolutional Neural Network (CNN). The CNN weights are learned from training data in an E2E fashion using maximum likelihood optimization. The learned model enables the recovery of images from undersampled measurements using the Maximum A Posteriori (MAP) optimization. In addition, the posterior model can be sampled to derive uncertainty maps about the reconstruction. Experiments on parallel MR image reconstruction show that our approach performs comparable to the memory-intensive E2E unrolled algorithm, performs better than its memory-efficient counterpart, and can provide uncertainty maps. Our framework paves the way towards MR image reconstruction in 3D and higher dimensions

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here