MedBlindTuner: Towards Privacy-preserving Fine-tuning on Biomedical Images with Transformers and Fully Homomorphic Encryption

17 Jan 2024  ·  Prajwal Panzade, Daniel Takabi, Zhipeng Cai ·

Advancements in machine learning (ML) have significantly revolutionized medical image analysis, prompting hospitals to rely on external ML services. However, the exchange of sensitive patient data, such as chest X-rays, poses inherent privacy risks when shared with third parties. Addressing this concern, we propose MedBlindTuner, a privacy-preserving framework leveraging fully homomorphic encryption (FHE) and a data-efficient image transformer (DEiT). MedBlindTuner enables the training of ML models exclusively on FHE-encrypted medical images. Our experimental evaluation demonstrates that MedBlindTuner achieves comparable accuracy to models trained on non-encrypted images, offering a secure solution for outsourcing ML computations while preserving patient data privacy. To the best of our knowledge, this is the first work that uses data-efficient image transformers and fully homomorphic encryption in this domain.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here