Med2Meta: Learning Representations of Medical Concepts with Meta-Embeddings

6 Dec 2019  ·  Shaika Chowdhury, Chenwei Zhang, Philip S. Yu, Yuan Luo ·

Distributed representations of medical concepts have been used to support downstream clinical tasks recently. Electronic Health Records (EHR) capture different aspects of patients' hospital encounters and serve as a rich source for augmenting clinical decision making by learning robust medical concept embeddings. However, the same medical concept can be recorded in different modalities (e.g., clinical notes, lab results)-with each capturing salient information unique to that modality-and a holistic representation calls for relevant feature ensemble from all information sources. We hypothesize that representations learned from heterogeneous data types would lead to performance enhancement on various clinical informatics and predictive modeling tasks. To this end, our proposed approach makes use of meta-embeddings, embeddings aggregated from learned embeddings. Firstly, modality-specific embeddings for each medical concept is learned with graph autoencoders. The ensemble of all the embeddings is then modeled as a meta-embedding learning problem to incorporate their correlating and complementary information through a joint reconstruction. Empirical results of our model on both quantitative and qualitative clinical evaluations have shown improvements over state-of-the-art embedding models, thus validating our hypothesis.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here