Mechanistic Interpretability for AI Safety -- A Review

22 Apr 2024  ·  Leonard Bereska, Efstratios Gavves ·

Understanding AI systems' inner workings is critical for ensuring value alignment and safety. This review explores mechanistic interpretability: reverse-engineering the computational mechanisms and representations learned by neural networks into human-understandable algorithms and concepts to provide a granular, causal understanding. We establish foundational concepts such as features encoding knowledge within neural activations and hypotheses about their representation and computation. We survey methodologies for causally dissecting model behaviors and assess the relevance of mechanistic interpretability to AI safety. We investigate challenges surrounding scalability, automation, and comprehensive interpretation. We advocate for clarifying concepts, setting standards, and scaling techniques to handle complex models and behaviors and expand to domains such as vision and reinforcement learning. Mechanistic interpretability could help prevent catastrophic outcomes as AI systems become more powerful and inscrutable.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here