Measuring Asymmetric Gradient Discrepancy in Parallel Continual Learning

ICCV 2023  ·  Fan Lyu, Qing Sun, Fanhua Shang, Liang Wan, Wei Feng ·

In Parallel Continual Learning (PCL), the parallel multiple tasks start and end training unpredictably, thus suffering from training conflict and catastrophic forgetting issues. The two issues are raised because the gradients from parallel tasks differ in directions and magnitudes. Thus, in this paper, we formulate the PCL into a minimum distance optimization problem among gradients and propose an explicit Asymmetric Gradient Distance (AGD) to evaluate the gradient discrepancy in PCL. AGD considers both gradient magnitude ratios and directions, and has a tolerance when updating with a small gradient of inverse direction, which reduces the imbalanced influence of gradients on parallel task training. Moreover, we propose a novel Maximum Discrepancy Optimization (MaxDO) strategy to minimize the maximum discrepancy among multiple gradients. Solving by MaxDO with AGD, parallel training reduces the influence of the training conflict and suppresses the catastrophic forgetting of finished tasks. Extensive experiments validate the effectiveness of our approach on three image recognition datasets.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here