Mean-variance hedging of unit linked life insurance contracts in a jump-diffusion model

15 Aug 2019  ·  Frank Bosserhoff, Mitja Stadje ·

We consider a time-consistent mean-variance portfolio selection problem of an insurer and allow for the incorporation of basis (mortality) risk. The optimal solution is identified with a Nash subgame perfect equilibrium. We characterize an optimal strategy as solution of a system of partial integro-differential equations (PIDEs), a so called extended Hamilton-Jacobi-Bellman (HJB) system. We prove that the equilibrium is necessarily a solution of the extended HJB system. Under certain conditions we obtain an explicit solution to the extended HJB system and provide the optimal trading strategies in closed-form. A simulation shows that the previously found strategies yield payoffs whose expectations and variances are robust regarding the distribution of jump sizes of the stock. The same phenomenon is observed when the variance is correctly estimated, but erroneously ascribed to the diffusion components solely. Further, we show that differences in the insurance horizon and the time to maturity of a longevity asset do not add to the variance of the terminal wealth.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here