Mean Field Analysis of Deep Neural Networks

11 Mar 2019  ·  Justin Sirignano, Konstantinos Spiliopoulos ·

We analyze multi-layer neural networks in the asymptotic regime of simultaneously (A) large network sizes and (B) large numbers of stochastic gradient descent training iterations. We rigorously establish the limiting behavior of the multi-layer neural network output. The limit procedure is valid for any number of hidden layers and it naturally also describes the limiting behavior of the training loss. The ideas that we explore are to (a) take the limits of each hidden layer sequentially and (b) characterize the evolution of parameters in terms of their initialization. The limit satisfies a system of deterministic integro-differential equations. The proof uses methods from weak convergence and stochastic analysis. We show that, under suitable assumptions on the activation functions and the behavior for large times, the limit neural network recovers a global minimum (with zero loss for the objective function).

PDF Abstract
No code implementations yet. Submit your code now

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here