Maximum Spanning Trees Are Invariant to Temperature Scaling in Graph-based Dependency Parsing

15 Jun 2021  ·  Stefan Grünewald ·

Modern graph-based syntactic dependency parsers operate by predicting, for each token within a sentence, a probability distribution over its possible syntactic heads (i.e., all other tokens) and then extracting a maximum spanning tree from the resulting log-probabilities. Nowadays, virtually all such parsers utilize deep neural networks and may thus be susceptible to miscalibration (in particular, overconfident predictions). In this paper, we prove that temperature scaling, a popular technique for post-hoc calibration of neural networks, cannot change the output of the aforementioned procedure. We conclude that other techniques are needed to tackle miscalibration in graph-based dependency parsers in a way that improves parsing accuracy.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here