Maximal Closed Set and Half-Space Separations in Finite Closure Systems

13 Jan 2020  ·  Florian Seiffarth, Tamas Horvath, Stefan Wrobel ·

Several concept learning problems can be regarded as special cases of half-space separation in abstract closure systems over finite ground sets. For the typical scenario that the closure system is implicitly given via a closure operator, we show that the half-space separation problem is NP-complete. As a first approach to overcome this negative result, we relax the problem to maximal closed set separation, give a generic greedy algorithm solving this problem with a linear number of closure operator calls, and show that this bound is sharp. For a second direction, we consider Kakutani closure systems and prove that they are algorithmically characterized by the greedy algorithm. As a first special case of the general problem setting, we consider Kakutani closure systems over graphs and give a sufficient condition for this kind of closure systems in terms of forbidden graph minors. For a second special case, we then focus on closure systems over finite lattices, give an improved adaptation of the generic greedy algorithm, and present an application concerning subsumption lattices.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here