Matrix-Transformation Based Low-Rank Adaptation (MTLoRA): A Brain-Inspired Method for Parameter-Efficient Fine-Tuning

12 Mar 2024  ·  Yao Liang, Yuwei Wang, Yang Li, Yi Zeng ·

Fine-tuning techniques based on Large Pretrained Language Models (LPLMs) have been proven to significantly enhance model performance on a variety of downstream tasks and effectively control the output behaviors of LPLMs. Recent studies have proposed numerous methods for fine-tuning a small number of parameters based on open-source LPLMs, reducing the demand for computational and storage resources. Among these, reparameterization fine-tuning methods represented by LoRA (Low-Rank Adaptation) have gained popularity. We find that although these methods perform well in many aspects, there is still considerable room for improvement in terms of complex task adaptability, performance, stability, and algorithm complexity. In response to this, inspired by the idea that the functions of the brain are shaped by its geometric structure, this paper integrates this idea into LoRA technology and proposes a new matrix transformation-based reparameterization method for efficient fine-tuning, named Matrix-Transformation based Low-Rank Adaptation (MTLoRA). MTLoRA aims to dynamically alter its spatial geometric structure by applying a transformation-matrix T to perform linear transformations, such as rotation, scaling, and translation, on the task-specific parameter matrix, generating new matrix feature patterns (eigenvectors) to mimic the fundamental influence of complex geometric structure feature patterns in the brain on functions, thereby enhancing the model's performance in downstream tasks. In Natural Language Understanding (NLU) tasks, it is evaluated using the GLUE benchmark test, and the results reveal that MTLoRA achieves an overall performance increase of about 1.0% across eight tasks; in Natural Language Generation (NLG) tasks, MTLoRA improves performance by an average of 0.95% and 0.56% in the DART and WebNLG tasks, respectively.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here