Master your Metrics with Calibration

6 Sep 2019  ·  Wissam Siblini, Jordan Fréry, Liyun He-Guelton, Frédéric Oblé, Yi-Qing Wang ·

Machine learning models deployed in real-world applications are often evaluated with precision-based metrics such as F1-score or AUC-PR (Area Under the Curve of Precision Recall). Heavily dependent on the class prior, such metrics make it difficult to interpret the variation of a model's performance over different subpopulations/subperiods in a dataset. In this paper, we propose a way to calibrate the metrics so that they can be made invariant to the prior. We conduct a large number of experiments on balanced and imbalanced data to assess the behavior of calibrated metrics and show that they improve interpretability and provide a better control over what is really measured. We describe specific real-world use-cases where calibration is beneficial such as, for instance, model monitoring in production, reporting, or fairness evaluation.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods