Markov $α$-Potential Games

21 May 2023  ·  Xin Guo, Xinyu Li, Chinmay Maheshwari, Shankar Sastry, Manxi Wu ·

This paper proposes a new framework of Markov $\alpha$-potential games to study Markov games. In this new framework, Markov games are shown to be Markov $\alpha$-potential games, and the existence of an associated $\alpha$-potential function is established. Any optimizer of an $\alpha$-potential function is shown to be an $\alpha$-stationary NE. Two important classes of practically significant Markov games, Markov congestion games and the perturbed Markov team games, are studied via this framework of Markov $\alpha$-potential games, with explicit characterization of an upper bound for $\alpha$ and its relation to game parameters. Additionally, a semi-infinite linear programming based formulation is presented to obtain an upper bound for $\alpha$ for any Markov game. Furthermore, two equilibrium approximation algorithms, namely the projected gradient-ascent algorithm and the sequential maximum improvement algorithm, are presented along with their Nash regret analysis, and corroborated by numerical experiments.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here