Marginal Utility for Planning in Continuous or Large Discrete Action Spaces

Sample-based planning is a powerful family of algorithms for generating intelligent behavior from a model of the environment. Generating good candidate actions is critical to the success of sample-based planners, particularly in continuous or large action spaces. Typically, candidate action generation exhausts the action space, uses domain knowledge, or more recently, involves learning a stochastic policy to provide such search guidance. In this paper we explore explicitly learning a candidate action generator by optimizing a novel objective, marginal utility. The marginal utility of an action generator measures the increase in value of an action over previously generated actions. We validate our approach in both curling, a challenging stochastic domain with continuous state and action spaces, and a location game with a discrete but large action space. We show that a generator trained with the marginal utility objective outperforms hand-coded schemes built on substantial domain knowledge, trained stochastic policies, and other natural objectives for generating actions for sampled-based planners.

PDF Abstract NeurIPS 2020 PDF NeurIPS 2020 Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here