Make Workers Work Harder: Decoupled Asynchronous Proximal Stochastic Gradient Descent

21 May 2016  ·  Yitan Li, Linli Xu, Xiaowei Zhong, Qing Ling ·

Asynchronous parallel optimization algorithms for solving large-scale machine learning problems have drawn significant attention from academia to industry recently. This paper proposes a novel algorithm, decoupled asynchronous proximal stochastic gradient descent (DAP-SGD), to minimize an objective function that is the composite of the average of multiple empirical losses and a regularization term. Unlike the traditional asynchronous proximal stochastic gradient descent (TAP-SGD) in which the master carries much of the computation load, the proposed algorithm off-loads the majority of computation tasks from the master to workers, and leaves the master to conduct simple addition operations. This strategy yields an easy-to-parallelize algorithm, whose performance is justified by theoretical convergence analyses. To be specific, DAP-SGD achieves an $O(\log T/T)$ rate when the step-size is diminishing and an ergodic $O(1/\sqrt{T})$ rate when the step-size is constant, where $T$ is the number of total iterations.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here