SDAT: Sub-Dataset Alternation Training for Improved Image Demosaicing

28 Mar 2023  ·  Yuval Becker, Raz Z. Nossek, Tomer Peleg ·

Image demosaicing is an important step in the image processing pipeline for digital cameras. In data centric approaches, such as deep learning, the distribution of the dataset used for training can impose a bias on the networks' outcome. For example, in natural images most patches are smooth, and high-content patches are much rarer. This can lead to a bias in the performance of demosaicing algorithms. Most deep learning approaches address this challenge by utilizing specific losses or designing special network architectures. We propose a novel approach, SDAT, Sub-Dataset Alternation Training, that tackles the problem from a training protocol perspective. SDAT is comprised of two essential phases. In the initial phase, we employ a method to create sub-datasets from the entire dataset, each inducing a distinct bias. The subsequent phase involves an alternating training process, which uses the derived sub-datasets in addition to training also on the entire dataset. SDAT can be applied regardless of the chosen architecture as demonstrated by various experiments we conducted for the demosaicing task. The experiments are performed across a range of architecture sizes and types, namely CNNs and transformers. We show improved performance in all cases. We are also able to achieve state-of-the-art results on three highly popular image demosaicing benchmarks.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here