Magnetoresistive RAM for error resilient XNOR-Nets

24 May 2019  ·  Michail Tzoufras, Marcin Gajek, Andrew Walker ·

We trained three Binarized Convolutional Neural Network architectures (LeNet-4, Network-In-Network, AlexNet) on a variety of datasets (MNIST, CIFAR-10, CIFAR-100, extended SVHN, ImageNet) using error-prone activations and tested them without errors to study the resilience of the training process. With the exception of the AlexNet when trained on the ImageNet dataset, we found that Bit Error Rates of a few percent during training do not degrade the test accuracy. Furthermore, by training the AlexNet on progressively smaller subsets of ImageNet classes, we observed increasing tolerance to activation errors. The ability to operate with high BERs is critical for reducing power consumption in existing hardware and for facilitating emerging memory technologies. We discuss how operating at moderate BER can enable Magnetoresistive RAM with higher endurance, speed and density.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods