Low-Range-Sidelobe Waveform Design for MIMO-OFDM ISAC Systems

30 May 2023  ·  Peishi Li, Zichao Xiao, Ming Li, Rang Liu, Qian Liu ·

Integrated sensing and communication (ISAC) is a promising technology in future wireless systems owing to its efficient hardware and spectrum utilization. In this paper, we consider a multi-input multi-output (MIMO) orthogonal frequency division multiplexing (OFDM) ISAC system and propose a novel waveform design to provide better radar ranging performance by taking range sidelobe suppression into consideration. In specific, we aim to design MIMO-OFDM dual-function waveform to minimize its integrated sidelobe level (ISL) while satisfying the quality of service (QoS) requirements of multi-user communications and the transmit power constraint. To achieve a lower ISL, the symbol-level precoding (SLP) technique is employed to fully exploit the degrees of freedom (DoFs) of the waveform design in both temporal and spatial domains. An efficient algorithm utilizing majorization-minimization (MM) framework is developed to solve the non-convex waveform design problem. Simulation results reveal radar ranging performance improvement and demonstrate the benefits of the proposed SLP-based low-range-sidelobe waveform design in ISAC systems.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here