Low Permutation-rank Matrices: Structural Properties and Noisy Completion

1 Sep 2017  ·  Nihar B. Shah, Sivaraman Balakrishnan, Martin J. Wainwright ·

We consider the problem of noisy matrix completion, in which the goal is to reconstruct a structured matrix whose entries are partially observed in noise. Standard approaches to this underdetermined inverse problem are based on assuming that the underlying matrix has low rank, or is well-approximated by a low rank matrix. In this paper, we propose a richer model based on what we term the "permutation-rank" of a matrix. We first describe how the classical non-negative rank model enforces restrictions that may be undesirable in practice, and how and these restrictions can be avoided by using the richer permutation-rank model. Second, we establish the minimax rates of estimation under the new permutation-based model, and prove that surprisingly, the minimax rates are equivalent up to logarithmic factors to those for estimation under the typical low rank model. Third, we analyze a computationally efficient singular-value-thresholding algorithm, known to be optimal for the low-rank setting, and show that it also simultaneously yields a consistent estimator for the low-permutation rank setting. Finally, we present various structural results characterizing the uniqueness of the permutation-rank decomposition, and characterizing convex approximations of the permutation-rank polytope.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here