Neural Atoms: Propagating Long-range Interaction in Molecular Graphs through Efficient Communication Channel

2 Nov 2023  ·  Xuan Li, Zhanke Zhou, Jiangchao Yao, Yu Rong, Lu Zhang, Bo Han ·

Graph Neural Networks (GNNs) have been widely adopted for drug discovery with molecular graphs. Nevertheless, current GNNs mainly excel in leveraging short-range interactions (SRI) but struggle to capture long-range interactions (LRI), both of which are crucial for determining molecular properties. To tackle this issue, we propose a method to abstract the collective information of atomic groups into a few $\textit{Neural Atoms}$ by implicitly projecting the atoms of a molecular. Specifically, we explicitly exchange the information among neural atoms and project them back to the atoms' representations as an enhancement. With this mechanism, neural atoms establish the communication channels among distant nodes, effectively reducing the interaction scope of arbitrary node pairs into a single hop. To provide an inspection of our method from a physical perspective, we reveal its connection to the traditional LRI calculation method, Ewald Summation. The Neural Atom can enhance GNNs to capture LRI by approximating the potential LRI of the molecular. We conduct extensive experiments on four long-range graph benchmarks, covering graph-level and link-level tasks on molecular graphs. We achieve up to a 27.32% and 38.27% improvement in the 2D and 3D scenarios, respectively. Empirically, our method can be equipped with an arbitrary GNN to help capture LRI. Code and datasets are publicly available in https://github.com/tmlr-group/NeuralAtom.

PDF Abstract
No code implementations yet. Submit your code now

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here