Log-normality and Skewness of Estimated State/Action Values in Reinforcement Learning

NeurIPS 2017  ·  Liangpeng Zhang, Ke Tang, Xin Yao ·

Under/overestimation of state/action values are harmful for reinforcement learning agents. In this paper, we show that a state/action value estimated using the Bellman equation can be decomposed to a weighted sum of path-wise values that follow log-normal distributions. Since log-normal distributions are skewed, the distribution of estimated state/action values can also be skewed, leading to an imbalanced likelihood of under/overestimation. The degree of such imbalance can vary greatly among actions and policies within a single problem instance, making the agent prone to select actions/policies that have inferior expected return and higher likelihood of overestimation. We present a comprehensive analysis to such skewness, examine its factors and impacts through both theoretical and empirical results, and discuss the possible ways to reduce its undesirable effects.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here