Location Sensitive Embedding for Knowledge Graph Reasoning

1 Dec 2023  ·  Deepak Banerjee, Anjali Ishaan ·

Embedding methods transform the knowledge graph into a continuous, low-dimensional space, facilitating inference and completion tasks. Existing methods are mainly divided into two types: translational distance models and semantic matching models. A key challenge in translational distance models is their inability to effectively differentiate between 'head' and 'tail' entities in graphs. To address this problem, a novel location-sensitive embedding (LSE) method has been developed. LSE innovatively modifies the head entity using relation-specific mappings, conceptualizing relations as linear transformations rather than mere translations. The theoretical foundations of LSE, including its representational capabilities and its connections to existing models, have been thoroughly examined. A more streamlined variant, LSE-d, which employs a diagonal matrix for transformations to enhance practical efficiency, is also proposed. Experiments conducted on four large-scale KG datasets for link prediction show that LSEd either outperforms or is competitive with state-of-the-art related works.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here