Bayesian Local Sampling-based Planning

8 Sep 2019  ·  Tin Lai, Philippe Morere, Fabio Ramos, Gilad Francis ·

Sampling-based planning is the predominant paradigm for motion planning in robotics. Most sampling-based planners use a global random sampling scheme to guarantee probabilistic completeness. However, most schemes are often inefficient as the samples drawn from the global proposal distribution, and do not exploit relevant local structures. Local sampling-based motion planners, on the other hand, take sequential decisions of random walks to samples valid trajectories in configuration space. However, current approaches do not adapt their strategies according to the success and failures of past samples. In this work, we introduce a local sampling-based motion planner with a Bayesian learning scheme for modelling an adaptive sampling proposal distribution. The proposal distribution is sequentially updated based on previous samples, consequently shaping it according to local obstacles and constraints in the configuration space. Thus, through learning from past observed outcomes, we maximise the likelihood of sampling in regions that have a higher probability to form trajectories within narrow passages. We provide the formulation of a sample-efficient distribution, along with theoretical foundation of sequentially updating this distribution. We demonstrate experimentally that by using a Bayesian proposal distribution, a solution is found faster, requiring fewer samples, and without any noticeable performance overhead.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here