Uncertainty Quantification for Local Model Explanations Without Model Access

13 Jan 2023  ·  Surin Ahn, Justin Grana, Yafet Tamene, Kristian Holsheimer ·

We present a model-agnostic algorithm for generating post-hoc explanations and uncertainty intervals for a machine learning model when only a static sample of inputs and outputs from the model is available, rather than direct access to the model itself. This situation may arise when model evaluations are expensive; when privacy, security and bandwidth constraints are imposed; or when there is a need for real-time, on-device explanations. Our algorithm uses a bootstrapping approach to quantify the uncertainty that inevitably arises when generating explanations from a finite sample of model queries. Through a simulation study, we show that the uncertainty intervals generated by our algorithm exhibit a favorable trade-off between interval width and coverage probability compared to the naive confidence intervals from classical regression analysis as well as current Bayesian approaches for quantifying explanation uncertainty. We further demonstrate the capabilities of our method by applying it to black-box models, including a deep neural network, trained on three real-world datasets.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here