Local case-control sampling: Efficient subsampling in imbalanced data sets

16 Jun 2013  ·  William Fithian, Trevor Hastie ·

For classification problems with significant class imbalance, subsampling can reduce computational costs at the price of inflated variance in estimating model parameters. We propose a method for subsampling efficiently for logistic regression by adjusting the class balance locally in feature space via an accept-reject scheme. Our method generalizes standard case-control sampling, using a pilot estimate to preferentially select examples whose responses are conditionally rare given their features. The biased subsampling is corrected by a post-hoc analytic adjustment to the parameters. The method is simple and requires one parallelizable scan over the full data set. Standard case-control sampling is inconsistent under model misspecification for the population risk-minimizing coefficients $\theta^*$. By contrast, our estimator is consistent for $\theta^*$ provided that the pilot estimate is. Moreover, under correct specification and with a consistent, independent pilot estimate, our estimator has exactly twice the asymptotic variance of the full-sample MLE - even if the selected subsample comprises a miniscule fraction of the full data set, as happens when the original data are severely imbalanced. The factor of two improves to $1+\frac{1}{c}$ if we multiply the baseline acceptance probabilities by $c>1$ (and weight points with acceptance probability greater than 1), taking roughly $\frac{1+c}{2}$ times as many data points into the subsample. Experiments on simulated and real data show that our method can substantially outperform standard case-control subsampling.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here