LLM Performance Predictors are good initializers for Architecture Search

25 Oct 2023  ·  Ganesh Jawahar, Muhammad Abdul-Mageed, Laks V. S. Lakshmanan, Dujian Ding ·

Large language models (LLMs) have become an integral component in solving a wide range of NLP tasks. In this work, we explore a novel use case of using LLMs to build performance predictors (PP): models that, given a specific deep neural network architecture, predict its performance on a downstream task. We design PP prompts for LLMs consisting of: (i) role: description of the role assigned to the LLM, (ii) instructions: set of instructions to be followed by the LLM to carry out performance prediction, (iii) hyperparameters: a definition of each architecture-specific hyperparameter and (iv) demonstrations: sample architectures along with their efficiency metrics and 'training from scratch' performance. For machine translation (MT) tasks, we discover that GPT-4 with our PP prompts (LLM-PP) can predict the performance of architecture with a mean absolute error matching the SOTA and a marginal degradation in rank correlation coefficient compared to SOTA performance predictors. Further, we show that the predictions from LLM-PP can be distilled to a small regression model (LLM-Distill-PP). LLM-Distill-PP models surprisingly retain the performance of LLM-PP largely and can be a cost-effective alternative for heavy use cases of performance estimation. Specifically, for neural architecture search (NAS), we propose a Hybrid-Search algorithm for NAS (HS-NAS), which uses LLM-Distill-PP for the initial part of search, resorting to the baseline predictor for rest of the search. We show that HS-NAS performs very similar to SOTA NAS across benchmarks, reduces search hours by 50% roughly, and in some cases, improves latency, GFLOPs, and model size.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods