Linear regression without correspondence

NeurIPS 2017  ·  Daniel Hsu, Kevin Shi, Xiaorui Sun ·

This article considers algorithmic and statistical aspects of linear regression when the correspondence between the covariates and the responses is unknown. First, a fully polynomial-time approximation scheme is given for the natural least squares optimization problem in any constant dimension. Next, in an average-case and noise-free setting where the responses exactly correspond to a linear function of i.i.d. draws from a standard multivariate normal distribution, an efficient algorithm based on lattice basis reduction is shown to exactly recover the unknown linear function in arbitrary dimension. Finally, lower bounds on the signal-to-noise ratio are established for approximate recovery of the unknown linear function by any estimator.

PDF Abstract NeurIPS 2017 PDF NeurIPS 2017 Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here