Linear Convergence of Accelerated Stochastic Gradient Descent for Nonconvex Nonsmooth Optimization

26 Apr 2017  ·  Feihu Huang, Songcan Chen ·

In this paper, we study the stochastic gradient descent (SGD) method for the nonconvex nonsmooth optimization, and propose an accelerated SGD method by combining the variance reduction technique with Nesterov's extrapolation technique. Moreover, based on the local error bound condition, we establish the linear convergence of our method to obtain a stationary point of the nonconvex optimization. In particular, we prove that not only the sequence generated linearly converges to a stationary point of the problem, but also the corresponding sequence of objective values is linearly convergent. Finally, some numerical experiments demonstrate the effectiveness of our method. To the best of our knowledge, it is first proved that the accelerated SGD method converges linearly to the local minimum of the nonconvex optimization.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods